Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.442
Filtrar
1.
Environ Monit Assess ; 196(5): 423, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570374

RESUMO

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.


Assuntos
Eucalyptus , Herbicidas , Oryza , Quinolinas , Sasa , Poluentes do Solo , Triazinas , Carvão Vegetal , Solo , Adsorção , Monitoramento Ambiental , Herbicidas/análise , Poluentes do Solo/análise
2.
J Environ Manage ; 357: 120767, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560953

RESUMO

The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Substâncias Húmicas/análise , Solo/química , Microbiologia do Solo , Herbicidas/química , Poluentes do Solo/química
3.
Sci Rep ; 14(1): 8001, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580796

RESUMO

Glyphosate, the most widely used herbicide, is linked with environmental harm and there is a drive to replace it in agricultural systems. We model the impacts of discontinuing glyphosate use and replacing it with cultural control methods. We simulate winter wheat arable systems reliant on glyphosate and typical in northwest Europe. Removing glyphosate was projected to increase weed abundance, herbicide risk to the environment, and arable plant diversity and decrease food production. Weed communities with evolved resistance to non-glyphosate herbicides were not projected to be disproportionately affected by removing glyphosate, despite the lack of alternative herbicidal control options. Crop rotations with more spring cereals or grass leys for weed control increased arable plant diversity. Stale seedbed techniques such as delayed drilling and choosing ploughing instead of minimum tillage had varying effects on weed abundance, food production, and profitability. Ploughing was the most effective alternative to glyphosate for long-term weed control while maintaining production and profit. Our findings emphasize the need for careful consideration of trade-offs arising in scenarios where glyphosate is removed. Integrated Weed Management (IWM) with more use of cultural control methods offers the potential to reduce chemical use but is sensitive to seasonal variability and can incur negative environmental and economic impacts.


Assuntos
60658 , Herbicidas , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas , Resistência a Herbicidas , Controle de Plantas Daninhas/métodos , Herbicidas/farmacologia , Plantas Daninhas
4.
Pestic Biochem Physiol ; 200: 105826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582590

RESUMO

Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.


Assuntos
4-Cloro-7-nitrobenzofurazano , Acetil-CoA Carboxilase , Butanos , Herbicidas , Nitrilas , Oxazóis , Propionatos , Acetil-CoA Carboxilase/metabolismo , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/metabolismo , Herbicidas/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Mutação , Resistência a Herbicidas/genética
5.
J Zhejiang Univ Sci B ; 25(4): 354-358, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38584096

RESUMO

Glufosinate-ammonium herbicides are the most widely used broad-spectrum, non-selective herbicides in the world. Glufosinate-ammonium is a structural analogue of glutamate (Glu) which can irreversibly inhibit the activity of glutamine synthetase (GS) and Glu decarboxylase in plants, thereby blocking the synthesis of glutamine (Gln) from Glu and ammonia (Hoerlein, 1994). This causes the plants to die because of the nitrogen metabolism disorder and subsequent intracellular accumulation of ammonia. In humans, the characteristic features of glufosinate-ammonium herbicide poisoning include gastrointestinal symptoms and neurotoxicity (Watanabe and Sano, 1998). Currently, there are no antidotes for glufosinate-ammonium herbicide poisoning, and thus supportive care is the key treatment.


Assuntos
Amônia , Herbicidas , Humanos , Aminobutiratos/metabolismo , Convulsões
6.
PLoS One ; 19(4): e0301104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593133

RESUMO

This study aimed to isolate actinomycetes that exhibit strong herbicidal activity, identify compounds active against weeds, and researching methods to improve the production of these compounds through culture optimization to establish a foundation for the development of environmentally friendly bioherbicides. 334-W4, one of the herbicidal active substances isolated from the culture broth of Streptomyces sp. KRA16-334, exhibited herbicidal activity against various weeds. The molecular formula of 334-W4 was determined to be C16H26N2O6, based on ESI-MS (m/z) and 1H and 13C NMR spectral data. It had molecular weight 365.1689 [M+Na] and 343.1869 [M+H], indicating the presence of the epoxy-ß-aminoketone moiety based on HMBC correlations. Additionally, selective culture was possible depending on the addition of trifluoroacetic acid (TFA) during culture with GSS medium. Experiments confirmed that exposure of the KRA16-334 strain to UV irradiation (254 nm, height 17 cm) for 45 seconds improved the yield of the active substance (334-W4) by over 200%. As a result of examining yields of active materials of four mutants selected through optimization of culture conditions such as temperature, agitation, and initial pH, the yield of one mutant 0723-8 was 264.7 ± 12.82 mg/L, which was 2.8-fold higher than that of wild-type KRA16-334 at 92.8 ± 5.48 mg/L.


Assuntos
Actinobacteria , Herbicidas , Streptomyces , Herbicidas/química , Plantas Daninhas
7.
Sci Total Environ ; 927: 172287, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593877

RESUMO

In this study, the sustainability of the electrokinetic remediation soil flushing (EKSFs) process integrated without and with adsorption barriers (EKABs) have been evaluated for the treatment of four soils contaminated with Atrazine, Oxyfluorfen, Chlorosulfuron and 2,4-D. To this purpose, the environmental effects of both procedures (EKSFs and EKABs) have been determined through a life cycle assessment (LCA). SimaPro 9.3.0.3 was used as software tool and Ecoinvent 3.3 as data base to carry out the inventory of the equipment of each remediation setup based on experimental measurements. The environmental burden was quantified using the AWARE, USEtox, IPPC, and ReCiPe methods into 3 Endpoint impact categories (and damage to human health, ecosystem and resources) and 7 Midpoints impact categories (water footprint, global warming potential, ozone depletion, human toxicity (cancer and human non-cancer), freshwater ecotoxicity and terrestrial ecotoxicity). In general terms, the energy applied to treatment (using the Spanish energy mix) was the parameter with the greatest influence on the carbon footprint, ozone layer depletion and water footprint accounting for around 70 % of the overall impact contribution. On the other hand, from the point of view of human toxicity and freshwater ecotoxicity of soil treatments with 32 mg kg-1 of the different pesticides, the EKSF treatment is recommended for soils with Chlorosulfuron. In this case, the carbon footprint and water footprint reached values around 0.36 kg of CO2 and 114 L of water per kg of dry soil, respectively. Finally, a sensitivity analysis was performed assuming different scenarios.


Assuntos
Recuperação e Remediação Ambiental , Herbicidas , Poluentes do Solo , Herbicidas/análise , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Adsorção , Solo/química , Agricultura/métodos
8.
Biointerphases ; 19(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602440

RESUMO

In mass spectrometry imaging (MSI), ion suppression can lead to a misinterpretation of results. Particularly phospholipids, most of which exhibit high gas-phase basicity (GB), are known to suppress the detection of metabolites and drugs. This study was initiated by the observation that the signal of an herbicide, i.e., atrazine, was suppressed in MSI investigations of earthworm tissue sections. Herbicide accumulation in earthworms was investigated by time-of-flight secondary ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Additionally, earthworm tissue sections without accumulation of atrazine but with a homogeneous spray deposition of the herbicide were analyzed to highlight region-specific ion suppression. Furthermore, the relationship of signal intensity and GB in binary mixtures of lipids, amino acids, and atrazine was investigated in both MSI techniques. The GB of atrazine was determined experimentally through a linear plot of the obtained intensity ratios of the binary amino acid mixtures, as well as theoretically. The GBs values for atrazine of 896 and 906 kJ/mol in ToF-SIMS and 933 and 987 kJ/mol in MALDI-MSI were determined experimentally and that of 913 kJ/mol by quantum mechanical calculations. Compared with the GB of a major lipid component, phosphatidylcholine (GBPC = 1044.7 kJ/mol), atrazine's experimentally and computationally determined GBs in this work are significantly lower, making it prone to ion suppression in biological samples containing polar lipids.


Assuntos
Atrazina , Herbicidas , Oligoquetos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Aminoácidos , Fosfatidilcolinas , Lasers
9.
J Agric Food Chem ; 72(15): 8840-8848, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570314

RESUMO

A series of new 4-amino-3,5-dicholo-6-(5-aryl-substituted-1H-pyrazol-1-yl)-2-picolinic acid compounds were designed and prepared to discover herbicidal molecules. The inhibitory activities of all new compounds against the root growth ofArabidopsis thaliana were assayed. On the whole, the new synthesized compounds displayed good inhibition effects and had excellent herbicidal activities on root growth of weed at 500 µM. Importantly, a selection of compounds demonstrated comparable herbicidal properties to picloram. At the dosage of 250 g/ha, most of the compounds showed a 100% postemergence herbicidal activity to control Chenopodium album and Amaranthus retroflexus. Using compound V-2, the mechanism of action was investigated based on a phenotype study using AFB5-deficient Arabidopsis thaliana. It was found that the novel 6-pyrazolyl-2-picolinic acids were auxinic compounds. In addition, it was proposed that V-2 may be an immune activator due to its upregulation of defense genes and the increased content of jasmonic acid.


Assuntos
Arabidopsis , Herbicidas , Herbicidas/farmacologia , Relação Estrutura-Atividade , Ácidos Picolínicos/farmacologia , Arabidopsis/genética
10.
J Agric Food Chem ; 72(15): 8401-8414, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587493

RESUMO

Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is a promising target for green herbicide discovery. However, the ligand configuration effects on PPO activity were still poorly understood. Herein, we designed 3-(N-phenyluracil)but-2-enoates using our previously developed active fragments exchange and link (AFEL) approach and synthesized a series of novel compounds with nanomolar ranges of Nicotiana tabacum PPO (NtPPO) inhibitory potency and promising herbicidal potency. Our systematic structure-activity relationship investigations showed that the E isomers of 3-(N-phenyluracil)but-2-enoates displayed improved bioactivity than their corresponding Z isomers. Using molecular simulation studies, we found that the E isomers showed a relatively lower entropy change and could sample more stable binding conformation to the receptor than the Z isomers. Our density functional theory (DFT) calculations showed that the E isomers showed higher chemical reactivity and lower electronic chemical potential than their corresponding Z isomers. Compound E-Ic emerged as the optimal compound with a Ki value of 3.0 nM against NtPPO, exhibiting a broader spectrum of weed control than saflufenacil at 37.5-75 g ai/ha and also safe to maize at 75 g ai/ha, which could be considered as a promising lead herbicide for further development.


Assuntos
Inibidores Enzimáticos , Herbicidas , Protoporfirinogênio Oxidase , Ligantes , Inibidores Enzimáticos/química , Controle de Plantas Daninhas , Herbicidas/farmacologia , Herbicidas/química , Tabaco
11.
Huan Jing Ke Xue ; 45(5): 2678-2685, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629531

RESUMO

Xingkai Lake, located in Heilongjiang Province, is an important fishery and agricultural base and is seriously polluted by agricultural non-point sources. To clarify the residual status of many pesticides in the surface water of Xingkai Lake, 27 types of pesticides, herbicides, and their degradation products were analyzed in rice paddy, drainage, and surface water around Xingkai Lake (China) during the rice heading and maturity periods. The results showed that all 27 types of pesticides, herbicides, and their degradation products were detected during the rice heading period, and the total concentration ranged from 247.97 to 6 094.49 ng·L-1. Additionally, 25 species were detected during the rice maturity period, and the total concentration ranged from 485.36 to 796.23 ng·L-1. In comparison, more pesticides, herbicides, and derived degradation products were detected during the heading period, and their total concentration was higher as well. During the rice heading period, atrazine, simetryn, and paclobutrazol were the main detected pesticides, atrazine and isoprothiolane were the main pesticides detected during the maturity period. The distribution characteristics of pesticides and herbicides in the surface water around Xingkai Lake (China) was similar to that in drainage, so they were probably imported from the drainage and rice paddy. The average risk quotient (RQ) values of atrazine, simetryn, prometryn, butachlor, isoprothiolane, and oxadiazon were higher than 0.1 in drainage and Xingkai Lake (China), which showed a potential risk to aquatic organisms.


Assuntos
Atrazina , Herbicidas , Resíduos de Praguicidas , Praguicidas , Tiofenos , Poluentes Químicos da Água , Praguicidas/análise , Resíduos de Praguicidas/análise , Lagos , Monitoramento Ambiental , Água/química , China , Medição de Risco , Poluentes Químicos da Água/análise
12.
Ital J Pediatr ; 50(1): 80, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644498

RESUMO

Diquat (DQ) is among the most widely used herbicides, and its intake can cause severe systemic toxicity that manifests rapidly. The resultant symptoms can cause the dysfunction of a range of tissues and organs,. As there is no specific antidote for diquat poisoning and the efficacy of extant treatments is suboptimal, physicians must acquire a more comprehensive understanding of the most effective approaches to managing affected patients. Relative few studies have been published to date focused on diquat poisoning in pediatric patients. In this report, we compare two similar cases of juvenile diquat poisoning with dynamic changes in clinical manifestations, laboratory values, and imaging results. For the first time, the difference in whether to perform blood flow perfusion and the time difference of initiation of hemoperfusion had a clear clinical difference in the subsequent effects of diquat poisoning in children with diquat poisoning. Limited evidence is available regarding the efficacy of early hemoperfusion for diquat poisoning; however, the differences in clinical outcomes articulated here highlight the benefits of early and timely hemoperfusion therapy in the treatment of DQ toxicity in children, in conjunction with primary supportive care in the management of DQ poisoning in children.


Assuntos
Diquat , Herbicidas , Humanos , Diquat/envenenamento , Adolescente , Masculino , Herbicidas/envenenamento , Feminino , Hemoperfusão , Criança
13.
Ying Yong Sheng Tai Xue Bao ; 35(3): 789-796, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646767

RESUMO

We established the optimal model by using the automatic machine learning method to predict the degradation efficiency of herbicide atrazine in soil, which could be used to assess the residual risk of atrazine in soil. We collected 494 pairs of data from 49 published articles, and selected seven factors as input features, including soil pH, organic matter content, saturated hydraulic conductivity, soil moisture, initial concentration of atrazine, incubation time, and inoculation dose. Using the first-order reaction rate constant of atrazine in soil as the output feature, we established six models to predict the degradation efficiency of atrazine in soil, and conducted comprehensive analysis of model performance through linear regression and related evaluation indicators. The results showed that the XGBoost model had the best performance in predicting the first-order reaction rate constant (k). Based on the prediction model, the feature importance ranking of each factor was in an order of soil moisture > incubation time > pH > organic matter > initial concentration of atrazine > saturated hydraulic conductivity > inoculation dose. We used SHAP to explain the potential relationship between each feature and the degradation ability of atrazine in soil, as well as the relative contribution of each feature. Results of SHAP showed that time had a negative contribution and saturated hydraulic conductivity had a positive contribution. High values of soil moisture, initial concentration of atrazine, pH, inoculation dose and organic matter content were generally distributed on both sides of SHAP=0, indicating their complex contributions to the degradation of atrazine in soil. The XGBoost model method combined with the SHAP method had high accuracy in predicting the performance and interpretability of the k model. By using machine learning method to fully explore the value of historical experimental data and predict the degradation efficiency of atrazine using environmental parameters, it is of great significance to set the threshold for atrazine application, reduce the residual and diffusion risks of atrazine in soil, and ensure the safety of soil environment.


Assuntos
Atrazina , Herbicidas , Modelos Teóricos , Poluentes do Solo , Solo , Atrazina/análise , Atrazina/química , Poluentes do Solo/análise , Poluentes do Solo/química , Herbicidas/análise , Herbicidas/química , Solo/química , Biodegradação Ambiental , Aprendizado de Máquina , Previsões
14.
J Agric Food Chem ; 72(11): 5595-5608, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446412

RESUMO

Metabolic resistance to the maize-selective, HPPD-inhibiting herbicide, mesotrione, occurs via Phase I ring hydroxylation in resistant waterhemp and Palmer amaranth; however, mesotrione detoxification pathways post-Phase I are unknown. This research aims to (1) evaluate Palmer amaranth populations for mesotrione resistance via survivorship, foliar injury, and aboveground biomass, (2) determine mesotrione metabolism rates in Palmer amaranth populations during a time course, and (3) identify mesotrione metabolites including and beyond Phase I oxidation. The Palmer amaranth populations, SYNR1 and SYNR2, exhibited higher survival rates (100%), aboveground biomass (c.a. 50%), and lower injury (25-30%) following mesotrione treatment than other populations studied. These two populations also metabolized mesotrione 2-fold faster than sensitive populations, PPI1 and PPI2, and rapidly formed 4-OH-mesotrione. Additionally, SYNR1 and SYNR2 formed 5-OH-mesotrione, which is not produced in high abundance in waterhemp or naturally tolerant maize. Metabolite features derived from 4/5-OH-mesotrione and potential Phase II mesotrione-conjugates were detected and characterized by liquid chromatography-mass spectrometry (LCMS).


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Amaranthus , Cicloexanonas , Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Amaranthus/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Resistência a Herbicidas , Corante Amaranto/metabolismo
15.
J Agric Food Chem ; 72(12): 6315-6326, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470442

RESUMO

Eco-friendly bioherbicides are urgently needed for managing the problematic weed Amaranthus retroflexus. A mass spectrometry- and bioassay-guided screening approach was employed to identify phytotoxic secondary metabolites from fungi for the development of such bioherbicides. This effort led to the discovery of six phytotoxic 16-residue peptaibols, including five new compounds (2-6) and a known congener (1), from Emericellopsis sp. XJ1056. Their planar structures were elucidated through the analysis of tandem mass and NMR spectroscopic data. The absolute configurations of the chiral amino acids were determined by advanced Marfey's method and chiral-phase liquid chromatography-mass spectrometry (LC-MS) analysis. Bioinformatic analysis and targeted gene disruption identified the biosynthetic gene cluster for these peptaibols. Compounds 1 and 2 significantly inhibited the radicle growth of A. retroflexus seedlings, and 1 demonstrated potent postemergence herbicidal activity against A. retroflexus while exhibiting minimal toxicity to Sorghum bicolor. Structure-activity relationship analysis underscored the importance of trans-4-hydroxy-l-prolines at both the 10th and 13th positions for the herbicidal activities of these peptaibols.


Assuntos
Herbicidas , Hypocreales , Peptaibols/química , Peptaibols/farmacologia , Herbicidas/farmacologia , Aminoácidos/metabolismo , Espectrometria de Massas , Hypocreales/metabolismo
16.
J Agric Food Chem ; 72(12): 6289-6301, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502021

RESUMO

The indiscriminate use of synthetic herbicides reduces its effectiveness. Bioherbicides produced with metabolites emerge as an alternative to managing weeds. We aimed to analyze the phytotoxic potential of the essential oil of Vanillosmopsis arborea (EOVA) and the α-bisabolol molecule, its main component. We evaluated the effects of EOVA and α-bisabolol at different concentrations on the germination, growth, antioxidant metabolism, and photosynthesis of different species. EOVA and α-bisabolol showed promising phytotoxic effects on the germination and initial growth of the weed Senna occidentalis, inhibiting the activity of the antioxidant enzymes and increasing lipid peroxidation. α-Bisabolol reduced the weed seedling growth by inducing oxidative stress, which suggests a greater role in postemergence. Moreover, in the weed postemergence, both EOVA and α-bisabolol caused damage in the shoots, reduced the chlorophyll content, and increased lipid peroxidation besides reducing photosynthesis in S. occidentalis. Overall, we suggest the promising action of α-bisabolol and EOVA as bioherbicides for weed control.


Assuntos
Herbicidas , Controle de Plantas Daninhas , Antioxidantes , Sesquiterpenos Monocíclicos , Herbicidas/farmacologia
17.
Physiol Plant ; 176(2): e14254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38499939

RESUMO

Together with rice, weeds strive for nutrients and space in farmland, resulting in reduced rice yield and quality. Planting herbicide-resistant rice varieties is one of the effective ways to control weeds. In recent years, a series of breakthroughs have been made to generate herbicide-resistant germplasm, especially the emergence of biotechnological tools such as gene editing, which provides an inherent advantage for the knock-out or knock-in of the desired genes. In order to develop herbicide-resistant rice germplasm resources, gene manipulation has been conducted to enhance the herbicide tolerance of rice varieties through the utilization of techniques such as physical and chemical mutagenesis, as well as genome editing. Based on the current research and persisting problems in rice paddy fields, research on the generation of herbicide-resistant rice still needs to explore genetic mechanisms, stacking multiple resistant genes in a single genotype, and transgene-free genome editing using the CRISPR system. Current rapidly developing gene editing technologies can be used to mutate herbicide target genes, enabling targeted genes to maintain their biological functions, and reducing the binding ability of target gene encoded proteins to corresponding herbicides, ultimately resulting in herbicide-resistant crops. In this review article, we have summarized the utilization of conventional and modern approaches to develop herbicide-resistant cultivars in rice as an effective strategy for weed control in paddy fields, and discussed the technology and research directions for creating herbicide-resistant rice in the future.


Assuntos
Herbicidas , Oryza , Oryza/genética , Herbicidas/farmacologia , Plantas Daninhas , Biotecnologia , Produtos Agrícolas/genética , Resistência a Herbicidas/genética
18.
World J Microbiol Biotechnol ; 40(5): 137, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504029

RESUMO

The present study evaluated the performance of the fungus Trichoderma reesei to tolerate and biodegrade the herbicide diuron in its agrochemical presentation in agar plates, liquid culture, and solid-state fermentation. The tolerance of T. reesei to diuron was characterized through a non-competitive inhibition model of the fungal radial growth on the PDA agar plate and growth in liquid culture with glucose and ammonium nitrate, showing a higher tolerance to diuron on the PDA agar plate (inhibition constant 98.63 mg L-1) than in liquid culture (inhibition constant 39.4 mg L-1). Diuron biodegradation by T. reesei was characterized through model inhibition by the substrate on agar plate and liquid culture. In liquid culture, the fungus biotransformed diuron into 3,4-dichloroaniline using the amide group from the diuron structure as a carbon and nitrogen source, yielding 0.154 mg of biomass per mg of diuron. A mixture of barley straw and agrolite was used as the support and substrate for solid-state fermentation. The diuron removal percentage in solid-state fermentation was fitted by non-multiple linear regression to a parabolic surface response model and reached the higher removal (97.26%) with a specific aeration rate of 1.0 vkgm and inoculum of 2.6 × 108 spores g-1. The diuron removal in solid-state fermentation by sorption on barley straw and agrolite was discarded compared to the removal magnitude of the biosorption and biodegradation mechanisms of Trichoderma reesei. The findings in this work about the tolerance and capability of Trichoderma reesei to remove diuron in liquid and solid culture media demonstrate the potential of the fungus to be implemented in bioremediation technologies of herbicide-polluted sites.


Assuntos
Celulase , Herbicidas , Hypocreales , Trichoderma , Fermentação , Trichoderma/metabolismo , Diurona/metabolismo , Ágar/metabolismo , Herbicidas/metabolismo , Biodegradação Ambiental , Celulase/metabolismo
19.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534250

RESUMO

Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.


Assuntos
Técnicas Biossensoriais , Herbicidas , Praguicidas , Técnicas Biossensoriais/métodos , Praguicidas/análise , Monitoramento Ambiental/métodos
20.
Appl Microbiol Biotechnol ; 108(1): 256, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451307

RESUMO

Homogentisate solanesyltransferase (HST) is a crucial enzyme in the plastoquinone biosynthetic pathway and has recently emerged as a promising target for herbicides. In this study, we successfully expressed and purified a stable and highly pure form of seven times transmembrane protein Chlamydomonas reinhardtii HST (CrHST). The final yield of CrHST protein obtained was 12.2 mg per liter of M9 medium. We evaluated the inhibitory effect on CrHST using Des-Morpholinocarbony Cyclopyrimorate (DMC) and found its IC50 value to be 3.63 ± 0.53 µM, indicating significant inhibitory potential. Additionally, we investigated the substrate affinity of CrHST with two substrates, determining the Km values as 22.76 ± 1.70 µM for FPP and 48.54 ± 3.89 µM for HGA. Through sequence alignment analyses and three-dimensional structure predictions, we identified conserved amino acid residues forming the active cavity in the enzyme. The results from molecular docking and binding energy calculations indicate that DMC has a greater binding affinity with HST compared to HGA. These findings represent substantial progress in understanding CrHST's properties and potential for herbicide development. KEY POINTS: • First high-yield transmembrane CrHST protein via E. coli system • Preliminarily identified active cavity composition via activity testing • Determined substrate and inhibitor modes via molecular docking.


Assuntos
Chlamydomonas reinhardtii , Herbicidas , Escherichia coli/genética , Simulação de Acoplamento Molecular , Proteínas de Membrana , Aminoácidos , Chlamydomonas reinhardtii/genética , Herbicidas/farmacologia , Fenilacetatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...